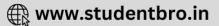
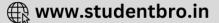
CHAPTER 10


VECTORS

VERY SHORT ANSWER TYPE QUESTIONS (1 MARK)

- 1. What are the horizontal and vertical components of a vector \overline{a} of magnitude 5 making an angle of 150° with the direction of *x*-axis.
- 2. What is $a \in R$ such that $|a \cdot \vec{x}| = 1$, where $\vec{x} = \hat{i} 2\hat{j} + 2\hat{k}$?
- 3. When is $\left|\overrightarrow{x} + \overrightarrow{y}\right| = \left|\overrightarrow{x}\right| + \left|\overrightarrow{y}\right|$?
- 4. What is the area of a parallelogram whose sides are given by $2\hat{i} \hat{j}$ and $\hat{i} + 5\hat{k}$?
- 5. What is the angle between \overrightarrow{a} and \overrightarrow{b} , If $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 3\sqrt{3}$.
- 6. Write a unit vector which makes an angle of $\frac{\pi}{4}$ with *x*-axis and $\frac{\pi}{3}$ with *z*-axis and an acute angle with *y*-axis.
- 7. If A is the point (4, 5) and vector \overrightarrow{AB} has components 2 and 6 along x-axis and y-axis respectively then write point B.

Get More Learning Materials Here :



- 8. What is the point of trisection of *PQ* nearer to *P* if positions of *P* and *Q* are $3\hat{i} + 3\hat{j} 4\hat{k}$ and $9\hat{i} + 8\hat{j} 10\hat{k}$ respectively?
- 9. Write the vector in the direction of $2\hat{i} + 3\hat{j} + 2\sqrt{3}\hat{k}$, whose magnitude is 10 units.
- 10. What are the direction cosines of a vector equiangular with co-ordinate axes?
- 11. What is the angle which the vector $3\hat{i} 6\hat{j} + 2\hat{k}$ makes with the x-axis?
- 12. Write a unit vector perpendicular to both the vectors $3\hat{i} - 2\hat{j} + \hat{k}$ and $-2\hat{i} + \hat{j} - 2\hat{k}$.
- 13. What is the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$?

14. If
$$|\overrightarrow{a}| = 2$$
, $|\overrightarrow{b}| = 2\sqrt{3}$ and $\overrightarrow{a} \perp \overrightarrow{b}$, what is the value of $|\overrightarrow{a} + \overrightarrow{b}|$?

- 15. For what value of λ , $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ is perpendicular to $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$?
- 16. What is $|\overrightarrow{a}|$, if $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = 3$ and $2|\overrightarrow{b}| = |\overrightarrow{a}|$?
- 17. What is the angle between \overrightarrow{a} and \overrightarrow{b} , if $|\overrightarrow{a} \overrightarrow{b}| = |\overrightarrow{a} + \overrightarrow{b}|$?
- 18. In a parallelogram *ABCD*, $\overrightarrow{AB} = 2\hat{i} \hat{j} + 4\hat{k}$ and $\overrightarrow{AC} = \hat{i} + \hat{j} + 4\hat{k}$. What is the length of side *BC*?
- 19. What is the area of a parallelogram whose diagonals are given by vectors $2\hat{i} + \hat{j} 2\hat{k}$ and $-\hat{i} + 2\hat{k}$?
- 20. Find $|\vec{x}|$ if for a unit vector \hat{a} , $(\vec{x} \hat{a}) \cdot (\vec{x} + \hat{a}) = 12$.
- 21. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and $\overrightarrow{a} + \overrightarrow{b}$ is also a unit vector then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?
- 22. If \hat{i} , \hat{j} , \hat{k} are the usual three mutually perpendicular unit vectors then what is the value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \vec{k}$. $(\hat{j} \times \hat{i})$?
- 23. What is the angle between \vec{x} and \vec{y} if \vec{x} . $\vec{y} = |\vec{x} \times \vec{y}|$?

- 24. Write a unit vector in *xy*-plane, making an angle of 30° with the +ve direction of *x*-axis.
- 25. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors with $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then what is the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$?
- 26. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $(\overrightarrow{a} + 2\overrightarrow{b})$ is perpendicular to $(5\overrightarrow{a} 4\overrightarrow{b})$, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

SHORT ANSWER TYPE QUESTIONS (4 MARKS)

27. If ABCDEF is a regular hexagon then using triangle law of addition prove that :

 \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 3 \overrightarrow{AD} = 6 \overrightarrow{AO} O being the centre of hexagon.

- 28. Points *L*, *M*, *N* divides the sides *BC*, *CA*, *AB* of a $\triangle ABC$ in the ratios 1 : 4, 3 : 2, 3 : 7 respectively. Prove that $\overrightarrow{AL} + \overrightarrow{BM} + \overrightarrow{CN}$ is a vector parallel to \overrightarrow{CK} where *K* divides *AB* in ratio 1 : 3.
- 29. The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ .
- 30. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three mutually perpendicular vectors of equal magnitude. Show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ makes equal angles with \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} with each angle as $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$.
- 31. If $\alpha = 3\hat{i} \hat{j}$ and $\beta = 2\hat{i} + \hat{j} + 3\hat{k}$ then express β in the form of $\beta = \beta_1 + \beta_2$, where β_1 is parallel to α and β_2 is perpendicular to α .
- 32. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

- 33. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 34. Let $\overrightarrow{a} = \hat{i} \hat{j}$, $\overrightarrow{b} = 3\hat{j} \hat{k}$ and $\overrightarrow{c} = 7\hat{i} \hat{k}$, find a vector \overrightarrow{d} which is perpendicular to \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} \cdot \overrightarrow{d} = 1$.
- 35. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{c} = \hat{j} \hat{k}$ are the given vectors then find a vector \overrightarrow{b} satisfying the equation $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{a} \cdot \overrightarrow{b} = 3$.
- 36. Find a unit vector perpendicular to plane *ABC*, when position vectors of *A*, *B*, *C* are $3\hat{i} \hat{j} + 2\hat{k}$, $\hat{i} \hat{j} 3\hat{k}$ and $4\hat{i} 3\hat{j} + \hat{k}$ respectively.
- 37. For any two vector, show that $|\overrightarrow{a} + \overrightarrow{b}| \leq |\overrightarrow{a}| + |\overrightarrow{b}|$.
- 38. Evaluate $(\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times \hat{k})^2$.
- 39. If \hat{a} and \hat{b} are unit vector inclined at an angle θ than prove that :

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} |\hat{a} - \hat{b}|$$
. (ii) $\tan \frac{\theta}{2} = \left| \frac{\hat{a} - \hat{b}}{\hat{a} + \hat{b}} \right|$.

40. For any two vectors, show that $|\vec{a} \times \vec{b}| = \sqrt{a^2 b^2 - (\vec{a} \cdot \vec{b})^2}$.

- 41. $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} \hat{j} + 2\hat{j}$ and $\overrightarrow{c} = x\hat{i} + (x 2)\hat{j} \hat{k}$. If \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} , then find the value of x.
- 42. Prove that angle between any two diagonals of *a* cube is $\cos^{-1}\left(\frac{1}{3}\right)$.
- 43. Let \hat{a} , \hat{b} and \hat{c} are unit vectors such that $\hat{a} \cdot \hat{b} = \hat{a} \cdot \hat{c} = 0$ and the angle between \hat{b} and \hat{c} is $\frac{\pi}{6}$, then prove that $\hat{a} = \pm 2(\hat{b} \times \hat{c})$.
- 44. Prove that the normal vector to the plane containing three points with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} lies in the direction of vector $\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}$.

CLICK HERE

≫

🕀 www.studentbro.in

- 45. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are position vectors of the vertices *A*, *B*, *C* of a triangle *ABC* then show that the area of $\triangle ABC$ is $\frac{1}{2} | \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} |$.
- 46. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, then prove that $\overrightarrow{a} \overrightarrow{d}$ is parallel to $\overrightarrow{b} \overrightarrow{c}$ provided $\overrightarrow{a} \neq \overrightarrow{d}$ and $\overrightarrow{b} \neq \overrightarrow{c}$.
- 47. Dot product of a vector with vectors $\hat{i} + \hat{j} 3\hat{k}$, $\hat{i} + 3\hat{j} 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ is 0, 5 and 8 respectively. Find the vectors.
- 48. If $\vec{a} = 5\hat{i} \hat{j} + 7\hat{k}$, $\hat{b} = \hat{i} \hat{j} \lambda\hat{k}$, find λ such that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are orthogonal.
- 49. Let \overrightarrow{a} and \overrightarrow{b} be vectors such that $|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}| = 1$, then find $|\overrightarrow{a} + \overrightarrow{b}|$.
- 50. If $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 5$ and $\overrightarrow{a} \times \overrightarrow{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the value of $\overrightarrow{a} \cdot \overrightarrow{b}$.
- 51. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors such that $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$. Prove that $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are mutually perpendicular to each other and $|\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = |\overrightarrow{a}|$.
- 52. If $\overrightarrow{a} = 2\hat{i} 3\hat{j}$, $\overrightarrow{b} = \hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = 3\hat{i} \hat{k}$ find $\left[\overrightarrow{a \ b \ c}\right]$.
- 53. Find volume of parallelepiped whose coterminous edges are given by vectors $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$, and $\vec{c} = 3\hat{i} \hat{j} + 2\hat{k}$.
- 54. Find the value of λ such that $\overrightarrow{a} = \hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = 2\hat{i} + \hat{j} \hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} \hat{j} + \lambda\hat{k}$ are coplanar.
- 55. Show that the four points (-1, 4, -3), (3, 2, -5) (-3, 8, -5) and (-3, 2, 1) are coplanar.

CLICK HERE

≫

🕀 www.studentbro.in

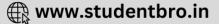
56. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that

$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

57. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , prove that $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ are coplanar.

ANSWERS

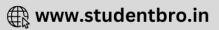
- 1. $-\frac{5\sqrt{3}}{2}, \frac{5}{2}$. 2. $a = \pm \frac{1}{3}$
- 3. \overrightarrow{x} and \overrightarrow{y} are like parallel vectors.
- 4. $\sqrt{126}$ sq units. 5. $\frac{\pi}{3}$
- 6. $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$ 7. (6, 11)
- 8. $\left(5, \frac{14}{3}, -6\right)$ 9. $4\hat{i} + 6\hat{j} + 4\sqrt{3}\hat{k}$.
- 10. $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}.$
- 11. $\cos^{-1}\left(\frac{3}{7}\right)$.


13. 0

15. –9

17. $\frac{\pi}{2}$.

- 12. $\frac{3\hat{i}+4\hat{j}-\hat{k}}{\sqrt{26}}$.
- 14. 4
- 16. 2
- 18. $\sqrt{5}$ 19. $\frac{3}{2}$ sq. units.



20.	√13	21.	$\frac{2\pi}{3}$
22.	-1	23.	$\frac{\pi}{4}$
24.	$\frac{\sqrt{3}}{2}\hat{i}+\frac{1}{2}\hat{j}$	25.	$-\frac{3}{2}$
26.	$\frac{\pi}{3}$		
29.	$\lambda = 1$		
31.	$\overrightarrow{\beta} = \left(\frac{3}{2}\hat{i} - \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{j} + \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{j} + \frac{3}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{j} + \frac{1}{2}\hat{j}\right) + \left(\frac{1}{2}\hat{j} +$	3 <i>ƙ</i>).	
33.	60°	34.	$\frac{1}{4}\hat{i}+\frac{1}{4}\hat{j}+\frac{3}{4}\hat{k}.$
35.	$\frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}.$	36.	$\frac{-1}{\sqrt{165}}\left(10\hat{i}+7\hat{j}-4\hat{k}\right).$
38.	$2\left \overrightarrow{a}\right ^2$	41.	<i>x</i> = -2
47.	$\hat{i} + 2\hat{j} + \hat{k}$	48.	$\pm\sqrt{73}$
49.	$\sqrt{3}$	50.	<u>91</u> 10
52.	4	53.	37
54.	$\lambda = 1$		

Get More Learning Materials Here : 📕

